To use the empirical rule calculator, follow these steps.
The result will be shown in three rows consisting of 68%, 95%, and 99.7% deviation respectively.
1 | What is the empirical rule? |
2 | How to use the Empirical rule? |
3 | References : |
The empirical rule calculator that is commonly recognized as a 68 95 99 rule calculator, is a straightforward and effective calculator that recognizes the figures of standard deviation from the mean value, either it is of 1 standard deviation or 2 standard deviations, or 3 standard deviations
In other simpler terms, it can help you determine 68, 95, and 99.7% of the data that is distributed in a graph.
We are going to discuss what empirical rule is and what its applications are and how you can use the empirical rule Calculator.
In arithmetic, the empirical rule states that practically any data would come inside three standard deviations of the mean in a typical set of data.
The mean value is defined as the average value of all the numbers that make a dataset.
The other terms that are used to call the empirical rule are the Law of 3 Sigma or the Rule of 68-95-99.7. It is because of:
Follow the steps below to understand the empirical rule.
Example:
Golf scores of a club have a standard deviation of 20 and are equally distributed with a mean of 110. Use the empirical rule to find the percentage of people scoring in a specific range.
Solution:
Step 1: Write down the values.
Mean μ = 110
Standard deviation σ = 20
Step 2: Apply the empirical rule formula:
μ - σ = 110 – 20 = 90
μ + σ = 110 + 20 = 130
68% of people scored between 90 and 130.
μ – 2σ = 110 – 2×20 = 70
μ + 2σ = 110 + 2×20 = 150
95% of people scored between 70 and 150.
μ - 3σ = 110 – 3×20 = 50
μ + 3σ = 110 + 3×20 = 170
99.7% of people scored between 50 and 170.
Your Review Will Appear Soon.